Calculating Partial Expected Value of Perfect Information via Monte Carlo Sampling Algorithms
نویسندگان
چکیده
منابع مشابه
Calculating partial expected value of perfect information via Monte Carlo sampling algorithms.
Partial expected value of perfect information (EVPI) calculations can quantify the value of learning about particular subsets of uncertain parameters in decision models. Published case studies have used different computational approaches. This article examines the computation of partial EVPI estimates via Monte Carlo sampling algorithms. The mathematical definition shows 2 nested expectations, ...
متن کاملMonte-Carlo Tree Search using Batch Value of Perfect Information
This paper focuses on the selection phase of MonteCarlo Tree Search (MCTS). We define batch value of perfect information (BVPI) in game trees as a generalization of value of computation as proposed by Russell and Wefald, and use it for selecting nodes to sample in MCTS. We show that computing the BVPI is NP-hard, but it can be approximated in polynomial time. In addition, we propose methods tha...
متن کاملIrreversible Monte Carlo Algorithms for Efficient Sampling
Equilibrium systems evolve according to Detailed Balance (DB). This principe guided development of the Monte-Carlo sampling techniques, of which Metropolis-Hastings (MH) algorithm is the famous representative. It is also known that DB is sufficient but not necessary. We construct irreversible deformation of a given reversible algorithm capable of dramatic improvement of sampling from known dist...
متن کاملMonte Carlo inference via greedy importance sampling
We present a new method for conducting Monte Carlo inference in graphical models which combines explicit search with generalized importance sampling. The idea is to reduce the variance of importance sampling by searching for significant points in the target distribution. We prove that it is possible to introduce search and still maintain unbiasedness. We then demonstrate our procedure on a few ...
متن کاملAn Expert-Level Card Playing Agent Based on a Variant of Perfect Information Monte Carlo Sampling
Despite some success of Perfect Information Monte Carlo Sampling (PIMC) in imperfect information games in the past, it has been eclipsed by other approaches in recent years. Standard PIMC has well-known shortcomings in the accuracy of its decisions, but has the advantage of being simple, fast, robust and scalable, making it well-suited for imperfect information games with large state-spaces. We...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Medical Decision Making
سال: 2007
ISSN: 0272-989X,1552-681X
DOI: 10.1177/0272989x07302555